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Corrections to the Fick-Jacobs equation
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Diffusion in a quasi-one-dimensional channel, with cross section varying along the longitudinal coordinate,
is considered. Using a rigorous mapping of the diffusion equation onto one dimension, eliminating transients
in transverse direction(s), we derive an expansion of the effective diffusion coefficient D(x), which represents

corrections to the Fick-Jacobs equation.
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I. INTRODUCTION

The key to solving most tasks coming from practice re-
sides in proper simplification of description of the problem,
reducing marginal effects, and leaving the substantial ones.
Bulk diffusion in quasi-one-dimensional systems [two-
dimensional (2D) or 3D narrow channel] of varying cross
section A(x) represents a simple example of a transport pro-
cess, where such reduction is useful and can be qualitatively
well understood: relaxation in transverse directions is mar-
ginal, but still influences 1D transport along the channel,
which is our primary interest. Finding a suitable “low reso-
lution” mathematical formulation, describing only 1D quan-
tities, giving satisfactory results but still remaining simple
enough to be used in practical calculations, is the open ques-
tion.

The problem under consideration is defined as follows: let
us study the time development of the 2D probability density
p(x,y,) in a domain bounded by the x axis and the upper
boundary, described by a function A(x)>0 for x; <x<xg.
The probability density obeys the diffusion equation

atp(xa%t)=D0(‘9;2c+‘?}2~)P(x’y’t), (1)

with diffusion constant D,, which will be set to 1 in the
sequel. We suppose reflecting boundary conditions (BC) at
the lower and upper boundaries y=0 and y=A(x); the BC at
the ends of the channel x;, xj are arbitrary.

We suppose that this domain is narrow [the typical width
of the channel A(x)<xz—x;] and only the 1D probability
density

A(x)
P(x,1) = J p(x,y,0)dy (2)
0

or corresponding 1D flux J(x,?) is of interest. The question is
how to find a differential equation governing P(x,f) giving
(at least for certain sets of initial conditions) the same result
as solving first the original diffusion equation (1) and then
calculating the 1D density P(x,?) according to Eq. (2).

The simplest equation of this kind is the Fick-Jacobs (FJ)
equation [1]
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d,P(x,1) = 3,A(x)d,.P(x,1)/A(x), (3)

respecting mass conservation in the longitudinal direction.
This approximation neglects the influence of relaxation in
transverse direction(s), supposing that it is infinitely fast, and
so the transverse profile of the 2D (3D) density p is always
flat. In a more detailed view, we have to notice that diffusing
particles pile up, or miss, at the curved wall if the channel is
getting narrower or wider in the direction of the local 1D flux
J(x,1), because they can flow out from and/or to the wall in
the y direction only at finite rate. The real transverse profile
of 2D (3D) density p depends on the transverse coordinates
and this causes additional terms in the FJ equation.

Among various attempts to find these corrections, we
mention Zwanzig’s work [2], where he derived equations

3,P(x,1) = . A(x)[1 = A"*(x)/3]9.P(x,1)/A(x),

3,P(x,1) = AX)[1 = R"*(x)/2]9,P(x,1)/A(x) (4)

for 2D and 3D channels with cylindrical symmetry, respec-
tively; R(x) is the radius and the cross section A(x)
=7R(x)? in the 3D case.

Tests on channels with exactly solvable geometries
showed that this correction does not suffice; Zwanzig esti-
mated that the factors (1-A'%/3), (1-R'?/2) are truncated
expansions of an effective diffusion coefficient D(x) which
could have the forms 1/(1+A’?/3) or 1/(1+R'?/2) in the
2D or 3D case, respectively.

The concept of the effective diffusion coefficient D(x)
was supported by Reguera and Rubi [3]; they presented con-
sistent reasons for the corrected FJ equation in form

9,P(x,1) = 9 A(x)D(x)d,P(x)/A(x), (5)

within the framework of mesoscopic nonequilibrium thermo-
dynamics. They also improved Zwanzig’s estimates of D(x),
proposing

D(x)=(1+A">)™" and D(x)=(1+R"?)™  (6)

for 2D and symmetric 3D channels, respectively, with rather
heuristic reasoning.

Without any doubt, the true form of the effective diffusion
coefficient D(x) can be found only by calculation of the next
corrections to the FJ equation. Recently [4], we presented a
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mapping procedure, enabling us to gain systematically
higher order corrections in the parameter €=D,/D,, which is
the ratio of diffusion constants in the longitudinal and trans-
verse directions. This anisotropy had been imposed on the
diffusion equation (1) at the beginning. The result is

a,P(x,1) = AAW)[1 — €Z(x,3,) 10, P(x)/A(x), )

with operator Z(x,d,) of the form

oo

) I
2n0) =3 ¢Gr.d= A" %[A’(AA A 4 A2A)
k=0

—TA) + (APA) 9]+ -+, (8)

the functions ¢, are also expressed as Taylor series in e.
Notice that the first order term ~e€ recovers the Zwanzig
correction (4), the 2D case. The same technique can be ap-
plied for mapping diffusion in a 3D channel as well; it is
generalized in our following study [5], where we proved that
full series of the type such as Eqgs. (7) and (8) represent exact
dimensional reduction of the original diffusion equation.
The problem is that instead of the expected effective dif-
fusion coefficient D(x), the exact mapping procedure gives

an operator 1—2(x,<9x), containing spatial derivatives of any
order, in general. The exact mapped equation (7) is then hard
to use in practical calculations. One possible way is to return
to the phenomenological description of Eq. (5), and calculate
succeeding orders of D(x) using a suitable mapping proce-
dure. This is the aim of our present communication.

II. EXPANSION OF D(x)

Both concepts, describing corrections to the FJ equation,

either using the operator Z(x, d,) or via the effective diffusion
coefficient D(x), can meet in the stationary regime, where
d,P(x,t)=0. The typical task here is to find the total flux J
through the channel, if the densities P(x;) and P(xg) at both
ends are kept fixed. Due to continuity, J is constant in x and
Eq. (5) is integrated to

J=-A(x)D(x)d.P(x)/A(x), 9)

which can also be understood as an algebraic equation, relat-
ing the gradient of P/A and D(x). Similarly, Eq. (7) leads to

J=—AW)[1 - Z(x,d,)]9,P(X)IA(x), (10)

which is a complicated differential equation of higher order
and it needs additional BC’s to be solved uniquely; many of
its solutions are nonphysical. Our goal is to find D(x) such
that the solutions of Eq. (9) also satisfy Eq. (10). We there-
fore substitute J,.P(x)/A(x) from Eq. (9) in Eq. (10),

1=AW[1 - Z(x,d) TAx)D(x)] ™. (11)

This relation fixes D(x) uniquely within a recurrence scheme
coming from our mapping procedure. To see this, we per-
form simple algebra:
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L AW - a)] 1AW
D) =A(x €Z(x,d, X
=(1+€eAZA™ + EAZATAZA + - )1

=[1- eA()Z(x,3)A™ (x)]™"1 (12)

(where the brackets enclose an operator, acting on the unit
function 1).

Using the expansion (8) of the operator Z(x, d,), we obtain
directly the expansion of 1/D(x) or D(x) in € the first few
terms are

A’
D(x) = 1= ZA™+ = —(0A7 + AA'A" - A°A®)

3
EA’
- %(135#5 +45AA"3A" - 58A%A'A™?
—41A%A7°A%) — 12434740 + 8A3A' AW 1+ 24%A )
+ o (13)

This method gives D(x) exactly, but it is rather tedious and
one cannot go to high orders in €. The following approxima-
tion results in a formula, which can be treated much more
easily: If we relax the rule that operators act on everything to
the right in products and suppose that factors

A(x)Z(x,(?x)A‘l(x) in Eq. (12) are only numbers, i.e., 7 acts
only on the following A~!, we can perform the final inversion
of 1/D(x) and write

D(x) =1 - eA(x)Z(x,d)A™ (x). (14)

The difference appears at order €. For determining the ex-
pansion of AZA™, it is possible to use the same recurrence

scheme as for generating Z (see Appendix); specific terms
then have simple structure and can be summed to infinity. In
the simplest approximation, one may neglect the second and
higher derivatives of A(x). The result is

_e'n
+uA12n+

62
D) =1-A2+Sa%4 -
3 5 2n+ 1

~
arctan \VeA'(x)

- 15
T (15)

The same procedure can be performed in the case of a 3D

channel with cylindrical symmetry. The corresponding op-
erator Z is given by the expansion

. 1
Z(x,0,) = ER’Z + i[R'(RZR“) +RR'R" - 14R"?)
+(RR*)' 9]+ -, (16)

and one can find similar formulas for D(x),
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L [1-€eR(X)Z(x,d)R' ()] or
D(x) o
D(x) = 1 — eR(x)Z(x,d,)R""(x). (17)
The first few terms of the exact expansion are

62
D(x)=1- §R’2 + ER’(18R’3 +3RR'R" - R’RY)

3
€
— ——R'(240R"> + 120RR'3R" — 36R*R'R"

768
—40R%*R'*R®) - 14R*R"RV
+RR'RY + R*RY) 4 -+ (18)

As expected, the approximation neglecting the second and
higher derivatives of radius R(x) allows us to express D(x) in
closed form

2n-1)N

3
D(x)=1- <R+ =R+ - + (—eA’?)"
2 8 (2n) !
1
s T——s, (19)
VI +€eR"?

which is the same formula (as opposed to the 2D case) as the
one proposed by Reguera and Rubi [3] for the 3D channel.
The quality of this approximation was demonstrated on the
exactly solvable example of calculating the stationary flux
through a 3D hyperboloidal cone with fixed 3D density
p(x,v1,y2)=pg as x— and p(x=0)=0. Comparison with
other methods can be found also in Ref. [6].

Verification of the formulas (15) and (19) in the Appendix
shows that there is no better approximation for D(x) involv-
ing only the first derivative of the cross section A(x); we
have collected here all the terms of this kind. Further im-
provement can be achieved only by including the terms with
higher derivatives of A(x). Finding the relevant infinite series
in the expansions (13) or (18) that can be summed into a
simple formula like Eq. (18) is not an easy task.

Another way to find D(x) is by the supposition that the 2D
(3D) density p depends only on one spatial, but curvilinear,
coordinate z=z(x,y); p(x,y,t)=p(z,f). A variational ap-
proach [6] showed that p(z,7) then obeys the equation

3,p(z,1) = 1/a(2)3,k(2) 3,p(z,1), (20)

for suitable functions a(z) and «(z) [fixed together with the
transformation relation z=z(x,y) within the method [6]], de-
pending on A(x) (2D) or R(x) (3D). Then finding the effec-
tive diffusion coefficient D(x) becomes in fact a matter of a
coordinate transformation which can be carried out in the
following manner: In the stationary regime d,0=0, the gen-
eral stationary solution of Eq. (20) is

p2)=C; | —+Co, (21)

where C,, C; are integration constants. Hence the total flux
J(x)=J is
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A(x)
Je- f dyap(z(x,y)) (2D);
0

R(x)
J=- f 27rdrd p(z(x,r)) (3D). (22)
0

On the other hand, we can calculate the stationary 1D density
P(x), Eq. (2), from p(z(x,y)), Eq. (21), and then a compari-
son of the flux J, Eq. (9), with Eq. (22) gives D(x).

For the form A(x)=ax, this calculation quickly verifies the
formula (15). According to Ref. [6], the proper curvilinear
coordinate is z=\x>+ey> and the corresponding «(z)=z.
Then the stationary density p(z)=C| In z+C, and the flux J
=-C, arctan(v’?a)/ Ve comes from Eq. (22). In Cartesian co-
ordinates, the corresponding stationary 1D density P(x) is

P tan(Ve 1
(x) = (arc al/l—(wa) —1+—1n(1+ea2)+1nx> +Cy,
A(x) Vea 2

(23)

so substituting into Eq. (9) and comparing with the result of
Eq. (22) gives

arctan( \s“';a)
D(x)= ——F=——. (24)
Vea

The 3D case with R(x)=ax can be treated in the same way:
the curvilinear coordinate z=x>+er? and the corresponding
k(z)=z* take place in this geometry. Following the same
steps, we arrive at the formula

1

V1 + ea

(25)

These results have exactly the form of Egs. (15) and (19).
The parameter a can be interpreted as the local slope of the
width A’(x) (2D) or radius R’(x) (3D) in the general case; in
this context, the formulas (15) and (19) represent an approxi-
mation of a locally linearized channel.

The variational method, using transformation to the cur-
vilinear coordinate z, enables us to avoid complicated expan-
sions and so it may help to suggest better approximations for
the effective diffusion coefficient D(x), including higher de-
rivatives of A(x). On the other hand, Eq. (20) in the higher
orders of € is not equivalent to the perturbation expansion
(7), which represents the exact mapping. It is worth then to
check any approximation of D(x) against its exact expansion
(13) or (18).

Let us notice that (for the reason of testing) the effective
diffusion coefficient D(x) for the channels with exactly solv-
able geometries can be also expressed exactly. As an ex-
ample, we do it for the 3D hyperboloidal cone: In oblate
spheroidal coordinates (£, ), x=aén, r*=a*(1+&)(1-177),
the cone is defined as a rectangle & <&<&p and 7y<7
<1 (n=1 coincides with the x axis); &; x denotes the ends of
the channel, the parameter 7,>0 sets the opening of the
cone, and a is a length scale. é=&(x,r) becomes the spatial
variable, in which the stationary density p(&) is considered.
Using the Laplaceian in oblate spheroidal coordinates in the
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FIG. 1. Effective diffusion coefficient D(x), depending on the
longitudinal coordinate x, for the 3D hyperboloidal cone (a=1, 7,
=0.4 and 0.7). The solid lines represent the exact function (27), the
dashed lines depict the approximation equation (19).

diffusion equation [2] or applying the variational method
[6].we arrive at k=1+&, hence p(£)=C, arctan £+C,,. The
total flux according to Eq. (22) is then J=-2ma(l-1,)C;.
In Cartesian coordinates, the boundary of the cone is
given by R%(x)=(a?73+x%)(1/75~1) and p(£) transforms to

P C 1-
ﬁ=C1 arctani+CO— zlxayog 70) .
(™ + mpa”) (1 + 79)

A(x) 7o
After substituting into Eq. (9) and comparing J, we obtain
the exact effective diffusion coefficient for this geometry

(26)

70(x> + 15a%)

3
x2 + 770(12

D(x) = (27)
This function compared with the approximate formula (19)
for the hyperboloidal cone is described in Fig. 1.

III. CONCLUSION

Our present analysis demonstrates that the mapping pro-
cedure, recently developed to project the 2D (3D) diffusion
in a narrow channel onto the longitudinal direction, can be
adopted to calculate the effective diffusion coefficient D(x),
defined within the framework of nonequilibrium thermody-
namics. D(x) involves corrections to the Fick-Jacobs equa-
tion, caused by the finite rate of relaxation in the transverse
directions. Although the exact mapping leads to a correction
operator, including derivatives d, instead of the pure correc-
tion function D(x), both descriptions become equivalent in
the limit of stationary regime that is used in this calculation.

Our result is a perturbation expansion of D(x) in a param-
eter €, which can be carried out to any desired order for an
arbitrarily shaped 2D or 3D channel with cylindrical symme-
try. (Until now, only the first order correction has been
known.) If the second and higher derivatives of the cross
section A(x) are neglected, the perturbation series can be
summed to infinity and we obtain simple approximate for-
mulas for D(x). In the 3D case, this calculation proves the
formula of Reguera and Rubi [3], argued originally only heu-
ristically.
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For practical purposes, it is worthwhile to look for a more
complex infinite series of terms in the expansion of D(x),
which could be summed and expressed in closed form, con-
taining also higher derivatives of A(x). We suppose that con-
sidering the 2D (3D) density as a function of one curvilinear
coordinate might be helpful in this effort.
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APPENDIX

We want to present here more technical details concerning
construction of the recurrence schemes for expansion of D(x)
and to prove the expansions leading to formulas (15) and
(19).

First, we have to recall briefly the recurrence scheme gen-
erating the operator Z(x, d,) (see Refs. [4,5]). In the mapping
procedure, there are two important operators, which are to be
found: aside from the operator Z, defining the dynamics in
the space of 1D functions P(x,7)/A(x), Eq. (7), there is also
an operator @®(x,y,d,), mapping the space of functions
P(x,1)/A(x) back onto the space of the original 2D densities
p(x,y,1), plx,y,0)=d(x,y,d,)P(x,1)/A(x), resulting in the
inverse relation

A(x)
P(x) = J dyd(x,y,d,)P(x)/A(x). (A1)
0

Both operators are written as expansions in the parameter €

x,y,d) = 2, €di(x,,d), €Z(x,d,) = >, €Z;(x,9,),
j=0 j=1

(A2)

and the operators @; and ZJ- are calculated simultaneously

according to the pair of recurrence relations

L

Jj
ﬁid)ﬁ-l(x’y’é’x) == g() (I)j—k(x7y’ aX)A(x) (7XA(.X)2/<(X, é’x)ax

- d,%caj(x7y7(9x) (A3)
and
Zj(x, d) 0= %é)j(x,y =A(x),d,) forj>0, (A4)

starting from @y(x,y,d,)=1 and Zy(x,d,)=—1 to be used in
Eq. (A3).

Having determined ‘95‘:’141’ we integrate it twice over Yy,
fix the integration constants to satisfy two conditions: BC in
the y direction d,@;(x,y,d,)|,-o=0 and normalization
fé(x)dy(bj(x,y,ax)=0, coming from Eq. (A1), and finally find

the next Zj +1(x,d,) according to Eq. (A4).
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This scheme leads to very complicated formulas after a

few iterations, if applied to find the operators @; and Z] The
result can be reduced to a much simpler form, 1f only @;f(x)

and Zj&_,f(x) for some specific functions f(x) are needed.
This is the case in calculating D(x) according to the approxi-
mate relation Eq. (14), i.e., the terms A(x)Zj(x, d)A™ (x).

In the simplest case, if we neglect the second and higher
derivatives of A(x), it is enough to take only f(x)
=[dx/A(x). Let us follow the first steps of the iterative pro-
cedure for this function,

1
) P -9 —
Fd,f(x) = ()ﬂxA(x)r?xf(x) f(x) = () d, 0
=2‘28 , (A5)

After double integration over y and fixing the integration
constants, we have

Y M)A’(x)

@‘f(x):<2_ 6 AR

0 B (6 AR, =340 (A0

and finally, we obtain the first correction term according to
Eq. (A4),

A(X)Z AN (x) = A(x)Z,0,f(x) = %A'(x)z. (A7)
Continuing the same way gives
X 2j AZJ A/Zj—l
— 1)y~ L
0flx)=(=1) (2] 2j(2j+l)> o A8
and
AWZA W) =AWZ 3 0= T 4 (a)
DZAT ) =ANZ ) =T AT

if A”(x) and its derivatives are neglected. The proof is by
mathematical induction. In j +1 order

d2w+1f wlal E = 8xAZk&J &Zw}f

) ) 12j-1
=(=1Y(2j+ 1)y¥ e terms with A",

(A10)

the derivative d, in the sum acts on AZk&j, which contains
only A’. Neglecting A”, performing double integration over
y, and fixing integration constants, we obtain expression
(A8) for j— j+1 and using Eq. (A4), we arrive at the corre-
sponding Eq. (A9).

Mapping a 3D channel with cylindrical symmetry is car-
ried out in the same way. We suppose the 3D density
p(x,r,1) to not depend on the angle ¢ in the cylindrical co-
ordinate system, connected with the axis of symmetry x, as
well as the boundary, defined by the local radius R(x). The
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density p then satisfies the original diffusion equation

a,p(x,r,t) = (82+ o”rz?)p(xrt) (A11)

with reflecting boundary condition on the wall and arbitrary
conditions at the ends of the tube, x=x;,x;z. The mapping
procedure generates again a differential equation for 1D den-
sity P(x,7), defined now as

R(x)

P(x,t) = 27TJ' rdrp(x,r,t), (A12)

0

of the form (7) with A(x)=mR>?(x). Aside from the operator

i(x,&x), we have to look also for the operator &(x,r,d,),
mapping P/A back onto the space of p. Both operators are
expressed as series [Eq. (A2)] in € and calculated simulta-
neously according to the recurrence relations

1 1
&r&w+1xr&)— 2 i—(x,7,0,) ()&XA(x)Zk(xﬁ)ﬁ
- aﬁca,i(x,r, 3 (A13)
and
R A'(x) 2R'(x)
Z‘(x’ ‘9,()&,( (X R(x) O")c) d)'(x’R(x)90"x)
/ A(x) R(x) 7
(A14)
for j>0, with the same starting values @y(x,r,d,)=1 and

Zo(x,d,)=—1 as in the 2D case. Fixing two integration con-
stants in 3D, we provide regularity of @; on the x axis and
the normalization condition [ g(x)rdr&)j(x,r,&x):o for j>0,
coming from Eq. (A12).

Calculation of the effective diffusion coefficient D(x) ac-
cording to Eq. (14) requires again taking f(x)=fdx/A(x) and
iterating for @;f(x) and A(x)ij&xf(x). The first step is obvi-
ous:

1 1
o, inf) = )axA(x)axf(x) RS0 == 0, e

_ 2R’ (x)

= TRw (A15)

After double integration over r and fixing the integration
constants, we have

2 R,(.X) '
Oflx) = ( 2R(x) 4>7TR(X)’
50 &, (6, R(x), ) (x) = fﬂ—l%, (A16)

and according to Eq. (A14), the first correction term to D(x)
is
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AXZA (x) =A(X)Z,0,f(x) = %R’(x)z. (A17)

If continued to higher orders, in the simplest approximation
when R”(x) and higher derivatives are neglected, the func-
tions @;f(x) have a bit more complicated structure,

D*(2k)! r
cj—kR2k+l(x) ’
(A18)

R S (=
' g (k1)

d)j(x’r’ ﬁx)f(x) =

to fit Eq. (A13) applied on f(x), together with

it (2!
2( )'(2k)

12
A(x)Z df(x) = 2( ) &k ¥

¢iie (A19)

depending only on R'(x) as in 2D, so the sum in Eq. (A13)
contains only terms with R”(x) and higher, which are to be
neglected in this approximation.

Integration constants c; are fixed from the normalization
conditions in successive orders. Starting from cy=-1, we
obtain the following sequence of equations

=Mk
Skt 1)

(= D)M))!

o= ioan s (A2

Its solution
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e

cj+1=m j=0 (A21)
can be easily verified, having constructed a function g(7),
. 1 —
g(1)= 2 1),(— )’+1—5(1—\'1+47—). (A22)

Using the property of g that g?(7)=g(7)+ 7, expanding both
sides of this relation in 7 and comparing the coefficients at
7*1, we obtain Eq. (A20) with Eq. (A21).

The function g(7) also enables us to find the approximate
formula for D(x). If we set eR'*(x)/4=1,

D(x) =1 -2, dAR)Z;0,f(x)
j=1

) j—] k ik .
B (= DK (= D23 — k- D)]!
—1—22(2% k1) (—k=1)1(-k)

=)

G1y ) =1-2[-g'(Dg(n)+g'(n) +1]

=-g'(1)=——. (A23)
8 V1 +47
Better approximations could be made, if one could find
next functions f(x), which help express &, A™'0,AZd,f
terms with higher accuracy. We leave this question open.
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